Превращение энергии при колебательном движении. Вынужденные колебания. Резонанс. Гармонические колебания. Превращение энергии при гармонических колебаниях Как изменяется энергия маятника при его колебании


Колебания – это любые процессы или движения, повторяющиеся через равные промежутки времени.

Свободные колебания возникают в системе под действием ее внутренних сил после выведения из положения равновесия.

Условия возникновения свободных колебаний :

1 . После выведения системы из положения равновесия должна возникнуть сила, стремящаяся вернуть ее в положение равновесия;

2 . Трение и сопротивление в системе должно быть достаточно мало.

Гармонические колебания – это периодические изменения физической величины в зависимости от времени, происходящие по закону синуса или косинуса.

Затухающие колебания – это колебания, происходящие при учете сил трения и сопротивления в системе.

Амплитуда колебания (А) - это модуль наибольшего смещения тела от положения равновесия.

Период колебания (Т) - это время одного полного колебания. Единица измерения – [c].

T = t /N , где t – время, N – число колебаний.

Частота колебаний (ν) – это число колебаний в единицу времени.

Единица измерения – [Гц].

Циклическая (круговая) частота (ω 0) – это число колебаний за 2π секунд. Единицы измерения - [рад/c]. ω 0 = 2π ν = 2π/Т.

Уравнение гармонических колебаний x = A sin (ω 0 t + φ 0), x = A cos (ω 0 t + φ 0),

φ - начальная фаза (единицы измерения- [рад]).

Примеры гармонических колебаний служат колебания математического и пружинного маятников.

Математический маятник – это материальная точка, подвешенная на длинной невесомой нерастяжимой нити. Схема сил, действующих на математический маятник, показана на рисунке.

F = F т + F упр

Для математического маятника циклическая частота

колебаний ω 0 = √g/l

период колебаний Т = 2π√l/g,

где l – длина нити,

g – ускорение свободного падения.

Пружинный маятник – это тело массой m, колеблющегося на пружине с коэффициентом жесткости k. Для пружинного маятника

циклическая частота колебаний ω 0 = √k / m ,

период колебаний Т = 2π√m / k.

При последовательном соединении пружин, общий коэффициент жесткости

к общ = (k 1 ∙ k 2) /(k 1 + k 2).

При параллельном соединении пружин, общий коэффициент жесткости k общ = k 1 + k 2 .

Закон сохранения энергии при гармонических колебаниях:

Е max пот = Е пот + Е кин = Е max кин;

где Е max пот - максимальная потенциальная энергия,

Е пот - потенциальная энергия,

Е кин – кинетическая энергия,

Е max кин - максимальная кинетическая энергия.

Вынужденные колебания – это колебания, происходящие под действием внешней, периодически действующей силы. Для вынужденных колебаний характерно явление резонанса.

Резонанс – это резкое возрастание амплитуды

вынужденных колебаний при совпадении

частоты действия внешней силы с частотой

собственных колебаний системы.

Увеличение амплитуды вынужденных

колебаний при резонансе выражено тем

отчетливее, чем меньше трение в системе.

Кривая 2 на рисунке соответствует

большему трению в системе,

кривая 1 – меньшему трению. Рис. 14.12

Автоколебаниями называются колебания, являющиеся незатухающими из-за наличия нутри системы источника энергии. Системы, в котором существуют автоколебания, называются автоколебательными системами. При этом подача энергии к колебательной системе регулируется самой системой с помощью регулятора по каналу обратной связи.

Механические колебания распространяются в упругих средах. Если какая – либо частица среды начинает колебаться, то из-за взаимодействия между частицами среды колебания начинают распространяться во все стороны, следовательно возникает волна.

Волна – это колебания, распространяющиеся в пространстве с течением времени.

Волна называется продольной , если колебания частиц происходит вдоль направления распространения волны. Продольные волны могут распространятся в твердой, жидкой и газообразной среде.

Волна называется поперечной , если колебания частиц происходят перпендикулярно направлению распространению волны. Поперечные волны могут распространяться только в твердой среде.

Длина волны (λ) – это расстояние между двумя ближайшими друг к другу точками, колеблющимися в одинаковых фазах. За один период волна распространяется в пространстве на расстояние, равное длине волны.

При колебаниях математического маятника полная энергия системы складывается из кинетической энергии материальной точки (шарика) и потенциальной энергии материальной точки в поле сил тяготения. При колебаниях пружинного маятника полная энергия складывается из кинетической энергии шарика и потенциальной энергии упругой деформации пружины:

При прохождении положения равновесия и в первом и во втором маятнике кинетическая энергия шарика достигает максимального значения, потенциальная энергия системы равна нулю. При колебаниях происходит периодическое превращение кинетической энергии в потенциальную энергию системы, полная энергия системы при этом остается неизменной, если отсутствуют силы сопротивления (закон сохранения механической энергии). Например, для пружинного маятника можно записать:

В колебательном контуре (рис.14.1.с) полная энергия системы складывается из энергии заряженного конденсатора (энергии электрического поля )и энергии катушки с током (энергии магнитного поля . Когда заряд конденсатора максимален, ток в катушке равен нулю (см. формулы 14.11 и 14.12), энергия электрического поля конденсатора максимальна, энергия магнитного поля катушки равна нулю. В момент времени, когда заряд конденсатора равен нулю, ток в катушке максимален, энергия электрического поля конденсатора равна нулю, энергия магнитного поля катушки максимальна. Также как и в механических осцилляторах, в колебательном контуре происходит периодическое превращение энергии электрического поля в энергию магнитного поля, полная энергия системы при этом остается неизменной, если отсутствует активное сопротивление R . Можно записать:

. (14.15)

Если в процессе колебаний на математический или на пружинный маятник действуют внешние силы сопротивления, а в цепи колебательного контура есть активное сопротивление R , энергия колебаний, а значит, и амплитуда колебаний будут уменьшаться. Такие колебания называются затухающими колебаниями , на рисунке 14.2 приведен график зависимости колеблющейся величины Х от времени.

Рис. 14.3

§ 16. Переменный электрический ток.

С источниками постоянного тока мы уже знакомы, знаем, для чего они нужны, знаем законы постоянного тока. Но гораздо большее практическое значение в нашей жизни имеет переменный электрический ток, который используется в быту, на производстве и других областях человеческой деятельности. Сила тока и напряжение переменного тока (например, в осветительной сети нашей квартиры) меняются со временем по гармоническому закону. Частота промышленного переменного тока – 50Гц. Источники переменного тока разнообразны по своему устройству и характеристикам. Проволочную рамку, вращающуюся в постоянном однородном магнитном поле, можно рассматривать как простейшую модель генератора переменного тока. На рис.14.3 рамка вращается вокруг вертикальной оси ОО , перпендикулярной силовым линиям магнитного поля, с постоянной угловой скоростью . Угол α между вектором и нормалью меняется по закону , магнитный поток через поверхность S , ограниченную рамкой, меняется со временем, в рамке возникает ЭДС индукции.

Превращение энергии при колебательном движении.

Затухающие колебания

Тип урока : комбинированный.

Задачи урока:

Образовательная: Изучить возможные превращения энергии в колебательных системах. Подтвердить справедливость закона сохранения механической энергии в колебательных системах. Понять взаимосвязь физических величин при колебательном процессе.

Воспитательная : внести максимализм в мотивы социального поведения для достижения определенной цели посредством решения экспериментальных задач.

Развивающая : развитие некоторых элементов умственной деятельности: умение выдвигать гипотезы, умение проверять гипотезы, наблюдать, делать выводы.

Оборудование к уроку: математический маятник, пружинный маятник, штатив, линейка, секундомер.

План урока:

Этап урока

Приемы и методы

время

Проверка домашнего задания, повторение

Устный опрос

5 мин

Изучение нового материала

Лекция (компьютерная динамическая модель + реальный маятник) (компьютерные технологии)

15 мин

физкультминутка

(здоровьесбережение)

1 мин

Закрепление и обобщение изученного

Решение экспериментальной задачи, с элементами игры (игра, проблемное обучение, групповое обучение)

20 мин

Подведение итогов

Обсуждение пройденного материала

4 мин

Ход урока:

I. Проверка домашнего задания, повторение

  1. Что называется амплитудой, периодом колебания, частотой колебания? Какой буквой обозначается и в каких единицах измеряется каждая из этих величин?
  2. Что такое полное колебание?
  3. Какая математическая зависимость существует между периодом и частотой колебания?
  4. Как найти период математического маятника?
  5. От чего зависит период пружинного маятника?
  6. Как направлены по отношению друг к другу скорости двух маятников в любой момент времени, если эти маятники колеблются в противоположных фазах; в одинаковых фазах?
  7. Какие колебания называются гармоническими?
  8. Как меняются действующая на тело сила, его ускорение и скорость при совершении им гармонических колебаний?

II. Новый материал

Рассмотрение нового материала удобно начать с показа колебаний грузов, закрепленных на нитях. Для наглядности удобно взять нити равной длины, а грузы - разной формы. Например, шарик и тонкую пластинку.

Легко заметить, что колебания во второй системе будут затухать быстрее, чем в первой (рис. 1).

Видно, что полная механическая энергия быстрее убывает во второй системе. Почему? Ясно, что любая колебательная система будет совершать колебания до тех пор, пока обладает энергией. Отводя маятник от положения равновесия, мы сообщаем системе начальную энергию (рис. 1). Она равна потенциальной энергии тела: Е п = mgh.

Рис. 1

Отпустив маятник, мы видим, что скорость тела возрастает, а значит, возрастает и его кинетическая энергия. Из закона сохранения механической энергии уменьшение потенциальной энергии

приводит к эквивалентному увеличению кинетической энергии. Для любой точки траектории, если в системе нет сил трения, справедливо:

т.е.

Если тело находится в крайних положениях, система обладает полной энергией Е, определяемой только потенциальной энергией. А в положении равновесия полная энергия равна максимальной кинетической энергии груза:

Важно понять, что составляющие полной энергии Е к и Е р не просто изменяются во времени, а изменяются периодически с заданным периодом колебаний в системе. Период изменения Е к и Е р в2 раза меньше периода колебаний Т.

Обычно реальные системы обладают собственным трением, и присутствует сила сопротивления среды.

Поэтому колебания в таких системах являются затухающими: полная механическая энергия начинает уменьшаться, т.к. уходит на преодоление сил трения. Следовательно, амплитуда колебаний уменьшается, и, когда работа силы трения становится равна по модулю исходной полной энергии в системе, колебания прекращаются.

Но на колебательную систему может действовать периодическая внешняя сила. Такая сила называется вынуждающей силой.

Тряска автомобиля, движущегося по неровной дороге, движение качелей, которые кто-то периодически подталкивает - все это вынужденные колебания.

Свободные колебания с течением времени затухают. Поэтому на практике чаще используются не свободные колебания, а вынужденные. Наиболее широко они применяются в различных вибрационных машинах.

3. Закрепление и обобщение изученного: Решение экспериментальной задачи.

Обучающимся предлагается экспериментальная задача: перед ними устанавливается пружинный маятник, масса груза известна. Дается линейка, секундомер.

Задание: с помощью подручных средств и полученных знаний узнать всё, что только возможно .

Все происходит в виде игры: ученики по-очереди выходят к доске и показывают вычисление любой из величин. Последний выступающий получает существенный бонус в виде внеочередной отличной оценки.

Варианты измерений и вычислений:

Амплитуда, период, частота, жесткость пружины, кинетическая и потенциальная энергия в нижней точке, в верхней точке, в середине движения. Полная механическая энергия. Сила тяжести грузика, сила упругости в различных точках. Скорость грузика в различных точках, путь за период и др.

III. подведение итогов

Обсуждение вопросов

процесс превращения энергии при гармоническом колебательном движении на примере пружинного маятника.

  1. Почему свободные колебания маятника затухают? При каких условиях колебания могут стать незатухающими?
  2. Чем определяется частота свободных колебаний? Почему ее называют собственной частотой колебательной системы?
  3. В каких машинах применяются вынужденные колебания?

Домашнее задание: §28, §28, Упражнение 25.


При изучении этой темы решают задачи по кинематике и динамике упругих колебаний. Полезно при этом сопоставление упругих колебаний с уже рассмотренными колебаниями маятника для выявления как их общих, так и специфических черт.

Решение задач требует применения второго закона Ньютона, закона Гука и формул кинематики гармонического колебательного движения.

Период упругих гармонических колебаний тела массой определяют по формуле (№ 758). Эта формула позволяет определить период различных гармонических колебаний, если известно значение Для упругих колебаний это коэффициент жесткости, а для колебаний математического маятника (№ 748).

В задачах о превращениях энергии в колебательном движении в основном рассматривают превращение кинетической энергии в потенциальную. Но для случая затухающих колебаний учитывают также превращение механической энергии во внутреннюю. Кинетическая энергия упругих колебаний

Потенциальная энергия

Будут ли отличаться и как колебания тел разной массы на одной и той же пружине? Ответ проверьте на опыте.

Ответ. Тело большей массы будет иметь больший период колебаний. Из формулы следует, что при одной и той же силе упругости тело большей массы будет иметь меньшее ускорение и, следовательно, будет двигаться медленнее. Это можно проверить, приводя в колебание подвешенные на динамометре грузы разной массы.

757(э). На пружину подвесили груз и затем поддерживали его так, чтобы пружина не растягивалась. Опишите, как будет двигаться груз, если убрать поддерживающую его опору. Ответ проверьте на опыте.

Решение, Отпустим груз свободно падать вниз. Тогда он растянет пружину на величину которую можно определить из соотношения

По закону сохранения энергии при обратном движении вверх груз поднимается на высоту будет совершать колебания с амплитудой h. Если же груз подвесить на пружине, он растянет ее на величину

Следовательно, положение, в котором висит груз в состоянии покоя, является центром, около которого совершаются колебания. Этот вывод легко проверить на «мягкой» длинной пружине, например от прибора «ведерко Архимеда».

758. Тело массой под действием пружины, имеющей жесткость совершает без трения колебания в горизонтальной плоскости вдоль стержня а (рис. 238). Определите период колебания тела, используя закон сохранения энергии.

Решение. В крайнем положении вся энергия тела потенциальная, а в среднем - кинетическая. По закону сохранения энергии

Для положения равновесия Следовательно,

759(э). Определите коэффициент жесткости резиновой нити и рассчитайте период колебания подвешенной на ней гири массой . Ответ проверьте на опыте.

Решение. Для ответа на воррос задачи учащиеся должен иметь резиновую нить, грузик массой 100 в, линейку и секундомер

Подвесив груз на нить, сначала рассчитывают величину численно равную силе, которая растягивает нить на единицу длины. В одном из опытов были получены следующие данные. Начальная длина нити см, конечная Откуда см

Измерив по секундомеру время 10-20 полных колебаний груза, убеждаются, что период, найденный расчетами, совпадает с полученным из опыта.

760. Используя решение задач 757 и 758, определите период колебаний вагона на рессорах, если его статическая осадка равна

Решение.

Следовательно,

Мы получили интересную формулу, по которой легко определить период упругих колебаний тела, зная только величину

761 (э). Используя формулу рассчитайте, а затем проверьте на опыте период колебаний на пружине от «ведерка Архимеда» грузов массой 100, 300, 400 г.

762. Пользуясь формулой получите формулу периода колебаний математического маятника.

Решение. Для математического маятника поэтому

763. Используя условие и решение задачи 758, найдите закон, по которому изменяется сила упругости пружины, и запишите уравнения данного гармонического колебательного движения, если в крайнем положении тело обладало энергией

Решение.

Примем, что Амплитуду колебаний А определим из формулы

Аналогично подставив значение массы, амплитуды и периода в общие формулы смещения, скорости и ускорения, получим:

Формулу ускорения можно было такжеполучить, пользуясь формулои силы

764. Математический маятник, имеющий массу и длину отклонили на 5 см. Какую скорость ускорение а и потенциальную энергию он будет иметь на расстоянии см от положения равновесия?