Что является первичным источником энергии на земле. Источники энергии на Земле. Движение. Теплота. Ветер полезное ископаемое


Самая большая энергетическая машина в мировом пространстве, мощность которой исчисляется не в миллионах и не в миллиардах, а в биллионах , - это Солнце. на Земле.

Каменный уголь, сгорающий в топках паровых котлов и испаряющий воду, возник из лесов, существовавших миллионы лет тому назад. Эти леса росли под тем же солнцем, под которым зреют наши хлеба, Солнце испаряет воду, которая приводит в движение водяные турбины.

Оно же создает воздушные течения, заставляющие работать ветряные двигатели. Великий русский ботаник Тимирязев говорил, что солнечный луч - это источник энергии , который в конечном счете приводит в движение не только огромный маховик мощной , но и кисть художника, и перо писателя.

Земля - аккумулятор солнечной энергии

Нашу планету Земля можно сравнить с гигантским приемником и аккумулятором солнечной энергии . Трудно представить себе то количество энергии, которое Земля получает от Солнца. Оно составляет двести шестьдесят биллионов лошадиных сил . 260 000 000 000 000 - это 260 миллионов миллионов, что в 100 000 раз превышает мощность всех энергетических станций и двигателей , созданных рукою человека!

Использование энергии Солнца

Уже десятки лет тому назад человек пытался непосредственно использовать энергию Солнца . Первые «солнечные» станции были построены в Крыму, в Египте и по ту сторону Атлантического океана, в Калифорнии. Большие вращающиеся вогнутые алюминиевые зеркала улавливают солнечные лучи и направляют их на паровой котел. Пар из парового котла поступает в паровую машину или турбину, которые вращают вал генератора, вырабатывающего электрический ток.

Так Солнце превращает энергию водяного пара в электричество, зажигающее миллионы солнц в наших жилищах. В Средней Азии существуют «солнечные» бани и «солнечные» плиты для варки пищи. Большая «солнечная» станция с площадью зеркала около 10 квадратных километров могла бы снабжать электроэнергией круглые сутки всю Германию. И это используя только лучистую энергию Солнца - источника энергии. Но не только солнце может служить людям источником энергии.

Земля - мощный источник энергии

Наша Земля может быть не только приемником и аккумулятором энергии Солнца, но и мощным источником энергии . Внутри ее кроется колоссальная энергия. Вспомним только о горячих источниках, и огнедышащих вулканах. Пока мы знаем, что температура ядра Земли достигает 4000°С . Если в глубь Земли пробуравить отверстие длиною 20-30 километров и подвести туда воду, то на наших глазах Земля превратится в гигантский паровой котел.

Горячим паром, выходящим из недр Земли, можно было бы не только приводить в движение машины, но и растопить льды на полюсах Земли, оттаять вечную мерзлоту в Сибири и превратить в цветущие сады ледяные и песчаные пустыни. Люди могли бы расходовать энергии в десять раз больше по сравнению с той энергией, которую они получают от каменного угля. Один французский ученый предлагает использовать «паровой котел» Земли дважды.

Воду можно направлять в глубокие скважины, чтобы использовать ее для работы гидроэлектростанции. Там, в глубине Земли, вода превратится в пар, и этот пар, в свою очередь, будет совершать полезную работу. Это не утопия, а технические расчеты, из которых созреют смелые проекты.

Осуществление их в наших руках. Уже сегодня в Италии, в Тосканской области, водяные пары, выходящие из земли, используются для получения электрической энергии. Если бы удалось использовать Везувий, можно было ежегодно экономить по 1350000 тонн каменного угля. Все это не менее увлекательно, чем фантастические романы Жюля Верна.

Энергия атомов

Но солнечные и вулканические станции - далеко не пределы возможного. Энергия атомов , крошечных строительных кирпичиков космоса, значительно превышает тепловую энергию, скрывающуюся в недрах Земли . 27 июня 1954 года впервые в мире в Дубне под Москвой была запущена в эксплуатацию атомную электростанцию Академии наук СССР. Совершенно ясно она доказывает превосходство атомной энергии над всеми другими видами энергии.

Обладая мощностью в 5000 киловатт, она расходует за 24 часа только 30 граммов урана . Тепловая электростанция такой же мощности за это время потребовала бы 80-100 тонн угля . Это значит, что из одного куска урана можно получить в два миллиона раз больше энергии, чем из такого же куска каменного угля.

Достаточно 70 граммов урана, чтобы заменить работу такой мощной гидроэлектростанции, как Днепровская, в течение целого года. Мощность двигателей атомного ледокола «В. И. Ленин» составляет 44 000 лошадиных сил. Ученые занимаются также конструированием атомных реактивных самолетов и ракет, которые открывают новые перспективы для космических полетов и посадки на другие планеты мира.

Известно, что шаг от паровой турбины к атомному двигателю был значительно короче, чем от к паровой машине . Развитие техники не знает остановок и преград. Технику двигают люди. Еще люди не исчерпали запасы каменного угля, нефти, урана, как ученые нашли способы использования энергии атома водорода. Тогда бескрайние моря и океаны превратятся в неисчерпаемые источники энергии для человечества будущего.

По мере развития и становления общества человечество стало искать все более современные и при этом экономичные способы получения энергии. Для этого сегодня возводятся различные станции, но в то же время широко используется энергия, содержащаяся в недрах земли. Какой она бывает? Попробуем разобраться.

Геотермальная энергия

Уже из названия понятно, что она представляет собой тепло земных недр. Под земной корой располагается слой магмы, являющийся огненно-жидким силикатным расплавом. Согласно данным исследований, энергетический потенциал этого тепла намного выше энергии мировых запасов природного газа, а также нефти. На поверхность выходит магма — лава. Причем наибольшая активность наблюдается в тех слоях земли, на которых находятся границы тектонических плит, а также там, где земная кора характеризуется тонкостью. Геотермальная энергия земли получается следующим образом: лава и водные ресурсы планеты соприкасаются, в результате чего вода начинает резко нагреваться. Это приводит к извержению гейзера, формированию так называемых горячих озер и подводных течений. То есть именно тем явлениям природы, свойства которых активно используются как энергии.

Искусственные геотермальные источники

Энергия, содержащаяся в недрах земли, должна использоваться грамотно. Например, есть идея создания подземных котлов. Для этого нужно пробурить две скважины достаточной глубины, которые будут соединяться внизу. То есть получается, что практически в любом уголке суши можно получать геотермальную энергию промышленным способом: через одну скважину будет закачиваться холодная вода в пласт, а через вторую - извлекаться горячая вода или пар. Искусственные источники тепла будут выгодны и рациональны, если получаемое тепло будет давать больше энергии. Пар можно направлять в турбогенераторы, в которых будет вырабатываться электричество.

Конечно, отобранное тепло - это всего лишь доля того, что имеется в общих запасах. Но следует помнить, что глубинный жар будет постоянно пополняться вследствие процессов сжатия горных пород, расслоения недр. Как говорят специалисты, земная кора аккумулирует тепло, общее количество которого в 5000 раз больше теплотворной способности всех ископаемых недр земли в целом. Получается, что время работы подобных искусственно созданных геотермальных станций может быть неограниченным.

Особенности источников

Источники, позволяющие получить геотермальную энергию, практически невозможно использовать полностью. Существуют они в 60 с лишним странах мира, при этом больше всего наземных вулканов на территории Тихоокеанского вулканического огненного кольца. Но на практике оказывается, что геотермальные источники в разных регионах мира совершенно разные по своим свойствам, а именно средней температуре, минерализации, газовому составу, кислотности и так далее.

Гейзеры - источники энергии на Земле, особенности которых в том, что они с определенными промежутками извергают кипящую воду. После того как произошло извержение, бассейн становится свободным от воды, на его дне можно заметить канал, который уходит глубоко в землю. Гейзеры как источники энергии используются в таких регионах, как Камчатка, Исландия, Новая Зеландия и Северная Америка, а одиночные гейзеры встречаются и в некоторых других областях.

Откуда берется энергия?

Совсем близко к земной поверхности располагается неостывшая магма. Из нее выделяются газы и пары, которые поднимают и проходят по трещинам. Смешиваясь с подземными водами, они вызывают их нагревание, сами превращаются в горячую воду, в которой растворены многие вещества. Такая вода выделяется на поверхность земли в виде разных геотермальных источников: горячих ключей, минеральных источников, гейзеров и так далее. По мнению ученых, горячие недра земли - это пещеры или камеры, соединенные проходами, трещинами и каналами. Они как раз заполняются подземными водами, а совсем недалеко от них располагаются очаги магмы. Таким естественным образом и образуется тепловая энергия земли.

Электрическое поле Земли

Есть в природе еще один альтернативный источник энергии, который отличается возобновляемостью, экологической чистотой, простотой в использовании. Правда, до сих пор этот источник только изучается и не применяется на практике. Так, потенциальная энергия Земли кроется в ее электрическом поле. Получить энергию таким способом можно на основании изучения базовых законов электростатики и особенностей электрического поля Земли. По сути, наша планета с точки зрения электрической - это сферический конденсатор, заряженный до 300 000 Вольт. Его внутренняя сфера имеет отрицательный заряд, а внешняя - ионосфера - положительный. является изолятором. Через нее происходит постоянное течение ионных и конвективных токов, которые достигают силы во много тысяч ампер. Однако разница потенциалов между обкладками при этом не уменьшается.

Это говорит о том, что в природе есть генератор, роль которого состоит в постоянном восполнении утечки зарядов с обкладок конденсатора. В роли такого генератора и выступает магнитное поле Земли, вращающееся вместе с нашей планетой в потоке солнечного ветра. ЭнергиямагнитногополяЗемлиможет быть получена как раз путем подключения к этому генератору потребителя энергии. Чтобы сделать это, нужно выполнить монтаж надежного заземления.

Возобновляемые источники

Поскольку численность населения нашей планеты неуклонно растет, нам требуется все больше энергии, чтобы обеспечить население. Энергия, содержащаяся в недрах земли, может быть самой разной. Например, существуют возобновляемые источники: энергия ветра, солнца и воды. Они отличаются экологической чистотой, а потому использовать их можно, не боясь причинить вред окружающей среде.

Энергия воды

Этот способ используется уже на протяжении многих веков. Сегодня построено огромное количество плотин, водохранилищ, в которых вода используется для того, чтобы вырабатывалась электрическая энергия. Суть действия этого механизма проста: под влиянием течения реки вращаются колеса турбин, соответственно, энергия воды превращается в электрическую.

Сегодня существует большое количество гидроэлектростанций, которые преобразуют энергию потока воды в электроэнергию. Особенность этого способа в том, что возобновляются, соответственно, такие конструкции имеют низкую себестоимость. Именно поэтому, несмотря на то что строительство ГЭС ведется довольно долго, да и сам процесс весьма затратный, все же эти сооружения значительно выигрывают у электроемких производств.

Энергия солнца: современно и перспективно

Солнечная энергия получается с помощью солнечных батарей, однако современные технологии позволяют использовать для этого новые методы. Крупнейшей в мире является система, построенная в пустыне Калифорнии. Она полностью обеспечивает энергией 2000 домов. Конструкция работает следующим образом: от зеркал отражаются солнечные лучи, которые направляются в центральный бойлер с водой. Она закипает и превращается в пар, вращающий турбину. Она, в свою очередь, связана с электрическим генератором. Ветер тоже может использоваться как энергия, которую дает нам Земля. Ветер надувает паруса, вращает мельницы. А теперь с его помощью можно создавать устройства, которые будут вырабатывать электрическую энергию. Вращая лопасти ветряка, он приводит в действие вал турбины, который, в свою очередь, связан с электрогенератором.

Внутренняя энергия Земли

Она появилась вследствие нескольких процессов, главные из которых - аккреция и радиоактивность. По мнению ученых, становление Земли и ее массы произошло за несколько миллионов лет, причем произошло это вследствие образования планетезималей. Они слипались, соответственно, масса Земли становилась все больше. После того как наша планета стала иметь современную массу, но еще была лишена атмосферы, на нее беспрепятственно падали метеорные и астероидные тела. Этот процесс как раз и называется аккрецией, и приводил он к тому, что выделялась значительная гравитационная энергия. И чем большие по размеру тела попадали на планету, тем в большем объеме выделялась энергия, содержащаяся в недрах Земли.

Эта гравитационная дифференциация привела к тому, что вещества стали расслаиваться: тяжелые вещества просто тонули, а легкие и летучие всплывали. Дифференциация сказывалась также и на дополнительном выделении гравитационной энергии.

Атомная энергия

Использование энергии земли может происходить по-разному. Например, с помощью возведения атомных электростанций, когда тепловая энергия выделяется за счет распада мельчайших частиц материи атомов. В качестве основного топлива служит уран, который содержится в земной коре. Многие считают, что именно этот способ получения энергии наиболее перспективен, однако его применение сопряжено с рядом проблем. Во-первых, уран излучает радиацию, которая убивает все живые организмы. К тому же если это вещество попадет в почву или атмосферу, то возникнет настоящая техногенная катастрофа. Печальные последствия аварии на Чернобыльской АЭС мы испытываем на себе по сегодняшний день. Опасность таится в том, что радиоактивные отходы могут угрожать всему живому очень и очень долгое время, целые тысячелетия.

Новое время - новые идеи

Конечно, люди не останавливаются на достигнутом, и с каждым годом предпринимается все больше попыток найти новые способы получения энергии. Если энергия тепла земли получается достаточно просто, то некоторые способы не так просты. Например, в качестве источника энергии вполне можно использовать биологический газ, который получается при гниении отходов. Его можно применить для отапливания домов и нагревания воды.

Все чаще возводятся когда поперек устьев водоемов устанавливаются плотины и турбины, которые приводятся в действие приливами и отливами, соответственно, получается электроэнергия.

Сжигая мусор, получаем энергию

Еще один способ, который уже применяется в Японии, - это создание мусоросжигательных заводов. Они сегодня построены в Англии, Италии, Дании, Германии, Франции, Нидерландах и США, однако только в Японии эти предприятия стали использоваться не только по назначению, но и для получения электричества. На местных заводах сжигается 2/3 всего мусора, при этом заводы оснащены паровыми турбинами. Соответственно, они снабжают теплом и электричеством близлежащие территории. При этом по затратам построить такое предприятие гораздо выгоднее, чем возвести ТЭЦ.

Более заманчивой выглядит перспектива использования тепла Земли там, где сосредоточены вулканы. В таком случае не понадобится бурить Землю слишком глубоко, поскольку уже на глубине 300-500 метров температура будет выше точки кипения воды минимум в два раза.

Существует и такой способ получения электроэнергии, как Водород - самый простой и легкий химический элемент - может считаться идеальным топливом, ведь он есть там, где есть вода. Если сжигать водород, можно получать воду, которая разлагается на кислород и водород. Само водородное пламя безвредное, то есть вреда окружающей среде наноситься не будет. Особенность этого элемента в том, что у него высокая теплотворная способность.

Что в будущем?

Конечно, энергия магнитного поля Земли или та, которую получают на атомных станциях, не может удовлетворить полностью все потребности человечества, которые растут с каждым годом. Однако специалисты говорят о том, что поводов для переживаний нет, поскольку топливных ресурсов планеты пока хватает. Тем более что используется все больше новых источников, экологически чистых и возобновляемых.

Остается проблема загрязнения окружающей среды, причем растет она катастрофически быстро. Количество вредных выбросов зашкаливает, соответственно, воздух, которым мы дышим, вреден, вода имеет опасные примеси, а почва постепенно истощается. Именно поэтому так важно своевременно заняться изучением такого явления, как энергия в недрах Земли, чтобы искать способы сокращения потребностей в органическом топливе и активнее использовать нетрадиционные источники энергии.


Солнце играет исключительную роль в жизни Земли. Весь органический мир нашей планеты обязан Солнцу своим существованием. Солнце - не только источник света и тепла, но и первоначальный источник многих других видов энергии (энергии нефти, угля, воды, ветра).

Солнечная постоянная - количество солнечной энергии, приходящей на поверхность площадью 1 кв.м, развернутую перпендикулярно солнечным лучам в космосе.

Солнце – это наша звезда. Изучая Солнце, мы узнаём о многих явлениях и процессах, происходящих на других звёздах и недоступных непосредственному наблюдению из-за огромных расстояний, которые отделяют нас от звёзд.

Солнце – это основной источник энергии на земле и первопричина, создавшая большинство других энергетических ресурсов нашей планеты, таких, как запасы каменного угля, нефти, газа, энергии ветра и падающей воды, электрической энергии и т.д.

Энергия Солнца, которая в основном выделяется в виде лучистой энергии, так велика, что её трудно даже себе представить. Достаточно сказать, что на Землю поступает только одна двухмиллиардная доля этой энергии, но она составляет около 2,5*10 18 кал./мин. По сравнению с этим все остальные источники энергии, как внешние (излучение луны, звёзд, космические лучи), так и внутренние (внутренние тепло Земли, радиоактивное излучение, запасы каменного угля, нефти и т.д.) пренебрежительно малы.

Солнце - самая близкая к нам звезда представляющая собой огромный светящийся газовый шар, диаметр которого примерно в 109 раз больше диаметра Земли, а его объём больше объёма Земли примерно в 1 млн. 300 тыс. раз. Средняя плотность Солнца составляет около 0,25 от плотности нашей планеты.

Поскольку солнце не твёрдый, а газовый шар, говорить о его размерах следует условно, понимая под ними размеры видимого с Земли солнечного диска.

Внутренняя часть солнца не доступна наблюдению. Она представляет собой своеобразный атомный котёл гигантских размеров, где под давлением около 100 миллиардов атмосфер происходят сложные ядерные реакции, во время которых водород превращается в гелий. Они-то и являются источником энергии солнца. Температура внутри солнца оценивается в 16 миллионов градусов.

Трофические цепи. Основные понятия, элементы.

1. Определение понятий "пищевая цепь", "трофический уровень", "консументы". Внутри экосистемы содержащие энергию органические вещества создаются автотрофными организмами и служат пищей (источником вещества и энергии) для гетеротрофов. Пример: животное поедает растения, это животное в свою очередь может быть съедено другим животным, и также путем может происходить перенос энергии через ряд организмов - каждый последующий питается предыдущим, поставляющим ему сырье и энергию. Такая последовательность называется пищевой цепью , а каждое ее звено - трофическим уровнем (греч. trophos - питание). Консументы : первичные - питаются первичными продуцентами, т.е. это травоядные животные; вторичные конс. - питаются травоядными, таким образом это уде плотоядные животные, так же как и третьичные конс., поедающие конс. второго порядка.

2 . Живые организмы, входящие в состав биоценоза в экосистеме, неодинаковы с точки зрения специфики ассимиляции ими вещества и энергии. В отличие от растений и бактерий животные не способны к реакци­ям фото- и хемосинтеза, а вынуждены использовать солнечную анергию опосредованно - через органичес­кое вещество, созданное фото- и хемосинтетиками. Таким образом, в биоценозе образуется цепочка после­довательной передачи вещества и эквивалентной ему энергии от одних организмов к другим или так называемая трофическая цепь (от греческого “трофе” - питаюсь).

Поскольку растения строят свой организм без посредников, их называют самопитающимися, или автотрофами. Так как будучи автотрофами, они со­здают первичное органическое вещество из неорганического, они являются продуцентами. Организмы, которые не могут строить собственное вещество из минеральных компонентов, используют органику, созданную автотрофами, употребляя их в пищу. Их называют гетеротрофами, что означает “питаемый другими”, а также консументами (от лат. “консумо” - потребляю). Плотоядные животные используют животные белки со специфическим набором амино­кислот. Они тоже являются консументами, но, в отличие от растительноядных, - консументами вторичными, или второго порядка. Но и на этом трофическая цепь не всегда заканчивается, так как вторичный консумент может служить источником питания для консумента третьего порядка и т.д. Но в одной трофи­ческой цепи не бывает консументов выше пятого порядка вследствие рассеяния энергии.

В процессе питания на всех трофических уровнях появляются “отходы”. Зеленые растения ежегодно частично или полностью сбрасывают листья. Значи­тельная часть организмов по тем или иным причинам постоянно отмирает. В конечном итоге так или иначе созданное органическое вещество должно частично или полностью замениться. Эта замена происходит благодаря особому звену трофической цепи - редуцентами (от лат. “редукцио” - возврат). Эти организмы - преимущественно бактерии, грибы, простейшие, мел­кие беспозвоночные - в процессе жизнедеятельности разлагают органические остатки всех трофических уровней продуцентов и консументов до минеральных веществ. Минеральные вещества, а также диоксид углерода, выделяющийся при дыхании редуцентов, вновь возвращаются к продуцентам.

Разные трофические цепи, в свою очередь, связа­ны между собой общими звеньями, образуя очень сложную систему, называемую трофической сетью.

Трофическая цепь в биогеоценозе есть одновре­менно цепь энергетическая, т.е. последовательный упорядоченный поток передачи энергии Солнца от продуцентов ко всем остальным звеньям. Поток энергии через экосистему можно измерить в различных ее точках, установив тем самым, какое количество солнечной энергии содержится в органи­ческих веществах, образованных в процессе фотосинтеза; какую часть энергии, заключенной в рас­тительном материале, может использовать растительноядное животное; какую часть этой энергии успевает использовать растительноядное, прежде, чем его съедает плотоядное, и так далее, от одного трофи­ческого уровня к другому.

Здравствуйте дорогие читатели ! Я, как и обещала, подготовила для Вас статью, в которой расскажу Вам о том, что такое возобновляемые источники энергии. Каких они бывают видов и чем каждый из них интересен. Давайте же начнем...

В наши дни ведется поиск альтернативных неисчерпаемых источников энергии. Некоторые из них уже разрабатываются. Энергия ветра использовалась сотни лет для плавания судов и работы ветряных мельниц. Современные ветровые турбины предназначенные для производства электричества (в одной лишь Калифорнии установленный в 15000 таких ветряков). Американские ученые пришли к выводу, что сила ветра может обеспечить выработку всей производимой США электроэнергии. Также в энергию можно преобразовывать и солнечное тепло. Сейчас в мире устанавливают множество солнечных батарей, которые обеспечивают электроэнергией какую-то часть населения в некоторых странах, в частности Филиппин, Австралии. В нынешней экологической ситуации на Земле всё больше и больше стран пытаются переходить на возобновляемые источники энергии и отказываться от существующих источников энергии из ископаемого топлива.

Существует множество современных разработок солнечных батарей и ветровых электростанций, которые с каждым годом усовершенствуются. Такое решение было принято для того, чтобы, во-первых, защитить нашу планету от ещё большего загрязнения, а во-вторых, чтобы удешевить электроэнергию для людей, которые с каждым годом потребляют всё больше и больше энергии. Сейчас становиться «модным» использовать энергию из возобновляемых источников, и больше такой вид энергии не считается устаревшим, неэффективным и неперспективным. Все как раз таки наоборот.

Вода, после ископаемого топлива, является древнейшим и важнейшим источником энергии. Водяные колеса используют уже более 2000 лет. Их в движение приводит течение рек. Такие колеса стали первым источником энергии в период Промышленной Революции конца XVIII века. В Европе в это время их насчитывалось примерно полмиллиона. Их использовали для перемалывания зерна, раздувания кузнечных мехов и управления падающим кузнечным молотом; при обжарке железа, высверливания оружейных стволов, а также для работы прядильных машин и ткацких станков. Чтобы обеспечить необходимый поток воды, обычно либо перегораживают реку плотиной, создавая запруду, либо отводят часть реки в мельничном пруду.

В качестве источника энергии сегодня из воды используется для производства электричества, или гидроэлектроэнергии. Современные ГЭС включают плотины и огромное водохранилища, которые обеспечивают поток падения воды с большой высоты. На современных ГЭС, вместо малоэффективных и громоздких водяных колес, сегодня установлены турбины, в которых поток воды вращает ротор. К каждой из таких турбин подключён электрогенератор.

Почти треть всей электроэнергии используемой в мире дает гидроэнергетика. Норвегия, в которой электроэнергии на душу населения больше, чем где-либо, живет практически исключительно за счёт гидроэнергии.

На гидроаккумулирующих электростанциях (ГАЭС) гидроэлектростанциях (ГЭС) используется потенциальная энергия воды, которая накапливается с помощью дамб. Существуют очень большие ГЭС. Самые широко известные две больших ГЭС в России — это Краснодарская (6000 МВт) и Братская (4100 МВт). Самая большая ГЭС в США это Гранд-Кули, ее мощность 6480 МВт. В 1995 году 7% электроэнергии, которая производилась во всём мире приходилось на гидроэнергетику.

Считается, что при использовании всех возможных источников можно было бы получить 2,25 млрд. кВт гидроэлектроэнергии. Начало 1990-х годов вырабатывалось всего лишь около 363 млн. кВт, или примерно 1% производимой энергии в мире.

Гидроэнергия — это один из самых чистых и дешевых энергоресурсов. Что очень важно этот ресурс постоянно возобновляется за счет прилива дождевой и речной воды.

Важнейшим преимуществом гидроэлектроэнергии является использование неисчерпаемых ресурсов. Однако для создания водохранилищ требуется затопление больших территорий, что наносит большой вред окружающей среде и нарушает экологический баланс.

Также для производства электричества научились использовать энергию приливов. Существуют приливные электростанции, в которых используются перепады уровней воды, образовавшиеся во время прилива и отлива. Для этого ограждают прибрежный бассейн невысокой плотиной, которая задерживает приливную воду при отливе. Потом воду выпускают, и она вращает гидротурбины. Устройство, называемое «нырок», преобразует движение волны в энергию. Приливные электростанции могут быть ценной энергетической помощью местного характера, но на Земле не так много соответствующих мест для их строительства.

Геотермальная электроэнергия вырабатывается с помощью тепла недр Земли. Проще всего использовать геотермальную энергию горячих источников и гейзеров. Геотермальная энергия уже используется в ряде стран, например Италии, Исландии, Новой Зеландии (в мире насчитывают 150 геотермальные электростанции) Толщина земной коры составляет 32 — 35 км, что значительно тоньше, чем лежащий под ней шар мантии, который тянется приблизительно на 2900 км к горячему жидкому ядру.

Мантия является источником богатых газами огненно-жидких пород (магма), которые извергаются действующими вулканами. Тепло, в основном, выделяется вследствие радиоактивного распада веществ в земном ядре. Температура и количество этого тепла настолько большие, что они провоцируют плавления пород мантии. Под поверхностью горячие породы могут создавать тепловые «мешки». В контакте с такими «мешками» вода нагревается и даже превращается в пар. Эти «мешки» преимущественно герметичны, поэтому горячая вода и пар очень часто находятся под большим давлением, а температура в этих средах превышает точку кипения воды на поверхности Земли. Самые большие геотермальные ресурсы сосредоточены в вулканических зонах на границах корковых плит.

Самым основным недостатком геотермальной энергии является тот факт, что ресурсы ограниченны и локализованы, если только исследования не показывают наличие значительных запасов горячий породы или возможность бурения скважин к мантии. А в 1991 году группе физиков ядерщиков из Оксфорда, что в Англии, удалось получить энергию с помощью ядерного синтеза. Речь идет о получении безопасного вида энергии.

Национальная научная организация США и НАСА провели исследования, которые засвидетельствовали, что значительное количество ветроэнергии в США можно получать в районе Больших озер, на Восточном побережье, а особенно на цепочке Алеутских островов. Максимальная расчетная мощность ветровых электростанций в этих областях может обеспечить 12% потребности США в электроэнергии. Самые большие ветроэлектростанции США размещены возле Голден Дейла, что в штате Вашингтон, где каждый из трёх генераторов (установленных на столбах высотой 60 м, диаметром ветрового колеса 90 м) дают 2,5 МВт электроэнергии. Также сейчас много стран Европы устанавливают ветроэлектростанции по новым современным технологиям. Они обеспечивают часть населения электроэнергией. Существуют программы по постепенному полному переходу на возобновляемые источники энергии во многих странах.

У солнечной энергии есть два основных преимущества. Во-первых: ее много и она относится к энергоресурсам, которые возобновляются (существование Солнца оценивается приблизительно в 5 млрд лет). Во-вторых: ее использование не причиняет нежеланных экологических последствий. Но использованию солнечной энергии препятствуют некоторые трудности. Количество этой энергии огромно, но она бесконтрольно рассеивается.

Для того чтобы получать большое количество энергии, необходимы коллекторные поверхности большой площади. Кроме этого, возникает проблема нестабильности энергосбережения: Солнце не всегда светит. Даже в пустынях, где преобладает безоблачная погода, день меняется ночью. Таким образом, необходимы накопители солнечной энергии. Но с современными технологиями все меняется и уже существуют такие накопители, и их постоянно усовершенствуют. Плюс ко всему технологии создания солнечных панелей тоже не стоят на месте, они стали гораздо эффективнее. Это уже не прошлый век! Это дает огромное преимущество для использования солнечной энергии. Некоторые теплые страны постепенно переходят на такие источники энергии.

Можно выделить три основных направления использования солнечной энергии: для кондиционирования воздуха, для отопления (в том числе горячего водоснабжения) и для прямого превращения в электроэнергию с помощью солнечных фотоэлектрических преобразователей и для крупномасштабного производства электроэнергии на основе теплового цикла.

На этом пока все на сегодня, пишите в комментариях, какой источник возобновляемой энергии Вам больше нравиться. Или, может быть, Вы уже используете какой-нибудь из них. Об ископаемом топливе можете почитать , а об энергетических ресурсах, в общем, . Подписывайтесь, чтоб не пропустить выход новых постов. Пока-пока всем.

Основной источник — энергия

Основные источники энергии, используемые человеком.  

Основной источник энергии, используемый автотрофа-ми, — Солнце. Образно говоря, автотрофы являются кормильцами биосферы: они не только питаются сами, но и кормят (своим телом) других. Поэтому их называют продуцентами. Биомасса, создаваемая ими, называется первичной.  

Основными источниками энергии на нефтеперерабатывающих заводах являются тепло, водяной пар и электроэнергия. Для получения всех видов энергии расходуется до 6 % перерабатываемой нефти, причем половина этого — количества сжигается на ТЭЦ, а другая — в трубчатых печах технологических установок. В связи с этим одной из важнейших проблем нефтегазоперфаботки является повышение технико-экономической эффективности всех технологических процессов.  

Основным источником энергии для всех процессов, происходящих в биосфере, является солнечное излучение. Атмосфера, окружающая Землю, слабо поглощает коротковолновое излучение Солнца, которое, в основном, достигает земной поверхности. Некоторая часть солнечного излучения поглощается и рассеивается атмосферой. Поглощение падающей солнечной радиации обусловлено наличием в атмосфере озона, углекислого газа, паров воды, аэрозолей.  

Основным источником энергии, аккумулируемой в аденозинтрифосфате (АТФ), является глюкоза. В клетках глюкоза с помощью ферментных систем сначала подвергается бескислородному расщеплению до двух молекул молочной кислоты СН3СН (ОН) СООН. Энергия, выделяемая при расщеплении одной молекулы глюкозы при гликолизе, аккумулируется в двух вновь образованных молекулах АТФ. По мере необходимости АТФ гидролизуется на аденозиндифосфат (АДФ) и фосфорную кислоту с выделением около 10 ккал тепловой энергии. Молочная кислота подвергается дальнейшему кислородному расщеплению в последовательных окислительно-восстановительных реакциях до углекислого газа и водорода, который, в свою очередь, окисляется кислородом воздуха до воды. Энергия, освобождаемая при этом, расходуется на регенерацию АТФ, то есть на присоединение к АДФ третьего остатка фосфорной кислоты. В результате полного расщепления двух молекул молочной кислоты выделяется энергия, достаточная для синтеза 36 молекул АТФ из АДФ.  

Основным источником энергии на Земле является Солнце.  

Основными источниками энергии, потребляемой промышленностью, являются горючие ископаемые и продукты их переработки, энергия воды, биомасса и ядерное топливо. В значительно меньшей степени используются энергия ветра, солнца, приливов, геотермальная энергия. Мировые запасы основных видов топлива оцениваются в 1 28 — Ю13 тонн УТ, в том числе, ископаемые угли 1 12 — Ю13 тонн, нефть 7 4 — Ю11 тонн и природный газ 6 3 — Ю11 тонн УТ.  

Основным источником энергии (тепла) в процессе азотирования является реакция азотирования, которая дает до 96 % от общего прихода энергии. Электроэнергия, подводимая при разогреве печи, составляет всего 2 — 3 % от общего прихода энергии.  

Основным источником энергии, поступающей на Землю, является Солнце. Солнечное излучение формируется в результате интенсивного взаимодействия с веществом в верхних слоях Солнца и находится с ним в равновесии. Электромагнитное излучение Солнца можно охарактеризовать двумя температурами — энергетической, которая определяется законом Стефана-Больцмана, и спектральной, определяемой из закона Вина. Для равновесного излучения эти температуры равны. Показателем неравновесности излучения может служить разность энергетической и спектральной температур. По мере удаления от поверхности Солнца энергетическая температура падает, а спектральная температура остается без изменения. Таким образом, неравновесность излучения по мере удаления от Солнца возрастает. Поэтому с увеличением расстояния от Солнца создаются более благоприятные условия для процессов самоорганизации, которые протекают в неравновесных условиях. С другой стороны, сложность образуемых систем зависит от температуры. С увеличением расстояния от Солнца температура падает, поэтому существует некоторое оптимальное расстояние, на котором возможно образование систем максимальной сложности. Уровень самоорганизации системы определяется степенью отклонения от равновесного состояния и уровнем сложности. В солнечной системе наиболее оптимальное сочетание названных параметров наблюдается на расстояниях, соответствующих орбите Земли. Таким образом, в Солнечной системе наибольший уровень самоорганизации может быть достигнут на Земле.  

Основными источниками энергии в пластах являются напор краевой воды, подошвенной воды, газа и газовой шапки; давление растворенного газа в нефти в момент выделения газа из раствора; сила тяжести; упругость пласта и насыщающих его нефти, воды и газа. Эти силы могут проявляться раздельно или совместно.  

Основными источниками энергии в пластах являются напор краевой воды, подошвенной воды, газа газовой шапки, давление растворенного газа в нефти в момент выделения газа из раствора, сила тяжести, упругость пласта и насыщающих его нефти, воды и газа. Эти силы могут проявляться раздельно или совместно. Таким образом, энергетические ресурсы нефтеносного пласта характеризуются существующим в нем давлением. Чем выше давление, тем больше при прочих равных условиях запасы энергии и тем полнее может быть использована залежь нефти.  

Основным источником энергии в промышленности, сельском хозяйстве и в других отраслях народного хозяйства служит топливо. В зависимости от физического состояния топливо подразделяется на твердое, жидкое и газообразное.  

Основными источниками энергии для человечества были мускульная сила людей и рабочего скота, а для обогрева жилищ и приготовления пищи использовалась древесина и навоз домашних животных. Однако доля древесины и древесного угля была велика, а мускульная сила человека и животных применялась по-прежнему.  

Основной источник - энергия - Большая Энциклопедия Нефти и Газа, статья, страница 1


Большая Энциклопедия Нефти и Газа Основной источник — энергия Основные источники энергии, используемые человеком.   Основной источник энергии, используемый автотрофа-ми, — Солнце.

Основные источники энергии

Основные источники энергии на службе человеку

Ископаемые виды топлива, такие как нефть, газ и уголь являются основными и чрезвычайно полезными для экономического развития. Однако все эти виды топлива имеют свои недостатки. Уголь является неэффективным. Нефть существует в ограниченных запасах.

Газ, хотя легко перемещать с места на место, может быть опасным, при его утечке. Включение угля, газа, нефти и других видов топлива в выработку электричества есть способ, чтобы сделать их гораздо более универсальными и полезными.

Тепло используется для кипячения воды и производства пара, который в свою очередь вращает винто-подобный механизм называемый турбиной. Турбины соединены с генератором, который вырабатывает электричество.

После электроэнергия полученная в силовой установкой, легко передается от одного места в другое надземные или подземными кабельными линиями. Внутри дома, завода и офиса, электричество снова преобразуется в другие виды энергии с помощью широкого спектра техники. Если у вас есть электрическая печь или тостер, то они преобразует электроэнергию, поставляемую с электростанции обратно в тепловую энергию для приготовления пищи.

Лампы в вашем доме преобразуют электрическую энергию в световую. По данным Министерства энергетики России, мировое потребление электроэнергии, вырастет на 71 процент в период между 2003 и 2030 гг. Около 80 процентов энергии которую мы используем сегодня, происходит от ископаемых видов топлива, но это не может продолжаться долго. Ископаемое топливо закончится рано или поздно.

К счастью, у нас есть альтернативы, основным источникам энергии. Мы можем сделать электричество из энергии ветра, или солнечных батарей.

Мы можем сжигать мусор для производства тепла, которое будет стимулировать электростанцию. Мы можем выращивать так называемые «энергетические культуры» (биомассы), чтобы сжечь в наших электростанциях вместо ископаемого топлива.

И мы можем использовать огромные запасы тепла в заключенные внутри Земли, известные как геотермальная энергия. Вместе, эти источники энергии, известны как возобновляемые источники энергии, потому что они будут длиться вечно (или, по крайней мере до тех пор, пока будет светить Солнце), не иссякая.

Если бы мы могли покрыть только один процент от пустыни Сахара солнечными панелями (площадь чуть меньше, чем Соединенные Штаты Америки), мы могли бы сделать более чем достаточно электроэнергии для всей нашей планеты. Мы также должны быть умнее в том, как мы используем энергию. Это называется энергоэффективность (экономия энергии).

Последовательное развитие возобновляемых источников энергии и технологий будет означать снижение доли централизованной крупной энергетики. Для общества это будет означать независимость от крупных энергетических компаний, а также повышение надежности электроснабжения.

Общий вывод очевиден. Научно-технический прогресс, появление новых технологий и материалов постоянно повышают роль возобновляемых источников энергии, которые уже замещают традиционные, основные источники энергии в значительном объеме. Общественное мнение «сдвигается» в сторону «распределенной энергетики», где основное место займут возобновляемые источники энергии.

Все это приводит к более глубокому изучению и использованию нетрадиционных возобновляемых источников энергии. Основное преимущество возобновляемых источников энергии их неисчерпаемость и экологическая чистота. Их использование не изменяет энергетический баланс планеты.

Основные источники энергии


Ископаемые виды топлива, такие как нефть, газ и уголь являются основными и чрезвычайно полезными для экономического развития. Однако все эти виды топлива имеют свои недостатки. Уголь является неэффективным.

Источники энергии

В основном энергию, используемую в быту и промышленности, мы добываем на поверхности Земли или в ее недрах. Например, во многих слаборазвитых странах жгут древесину для отопления и освещения жилищ, тогда как в развитых странах для получения электроэнергии сжигают различные ископаемые источники топлива - уголь, нефть и газ. Ископаемые виды топлива представляют собой не возобновляемые источники энергии. Их запасы восстановить невозможно. Ученые сейчас изучают возможности использования неисчерпаемых источников энергии.

Ископаемые виды топлива

Уголь, нефть и газ - невозобновляемые источники энергии, которые сформировались из остатков древних растений и животных, обитавших на Земле миллионы лет назад (подробнее в статье «Древнейшие формы жизни«). Эти виды топлива добываются из недр и сжигаются для получения электроэнергии. Однако использование ископаемых источников топлива создает серьезные проблемы. При современных темпах потребления известные запасы нефти и газа будут исчерпаны уже в ближайшие 50 лет. Запасов угля хватит лет на 250. При сжигании этих видов топлива образуются газы, под воздействием которых возникает парниковый эффект и выпадают кислотные дожди.

Возобновляемые источники энергии

По мере роста численности населения (см. статью «Население Земли«) людям требуется все больше энергии, и многие страны переходят к использованию возобновляемых источников энергии - солнца, ветра и воды. Идея их применения пользуется широкой популярностью, так как это - экологически чистые источники, использование которых не наносит вреда окружающей среде.

Гидроэлектростанции

Энергию воды используют на протяжении многих веков. Вода вращала водяные колеса, использовавшиеся для разных целей. В наши дни построены огромные плотины и водохранилища, и вода применяется для выработки электроэнергии. Течение реки вращает колеса турбин, превращая энергию воды в электроэнергию. Турбина связана с генератором, который вырабатывает электроэнергию.

Солнечная энергия

Земля получает громадное количество солнечной энергии. Современная техника позволяет ученым разрабатывать новые методы использования солнечной энергии. Крупнейшая в мире солнечная электростанция построена в пустыне Калифорнии. Она полностью обеспечивает потребности 2000 домов в энергии. Зеркала отражают солнечные лучи, направляя их в центральный бойлер с водой. Вода в нем кипит и превращается в пар, который вращает турбину, связанную с электрогенератором.

Энергия ветра

Энергия ветра используется человеком уже не первое тысячелетие. Ветер надувал паруса и вращал мельницы. Для использования энергии ветра создавались самые разнообразные устройства, предназначенные для выработки электроэнергии и для других целей. Ветер вращает лопасти ветряка, приводящие в действие вал турбины, связанной с электрогенератором.

Атомная энергия

Атомная энергия - тепловая энергия, выделяющаяся при распаде мельчайших частиц материи - атомов. Основным топливом для получения атомной энергии является уран - элемент, содержащийся в земной коре. Многие люди считают атомную энергию энергией будущего, но ее применение на практике создает ряд серьезных проблем. Атомные электростанции не выделяют ядовитых газов, но могут создавать немало трудностей, так как это топливо радиоактивно. Оно излучает радиацию, убивающую все живые организмы. Если радиация попадает в почву или в атмосферу, это влечет за собой катастрофические последствия.

Аварии ядерных реакторов и выбросы радиоактивных веществ в атмосферу представляют собой большую опасность. Авария на ядерной электростанции в Чернобыле (Украина), случившаяся в 1986 г., повлекла за собой гибель многих людей и заражение огромной территории. Радиоактивные отходы угрожают всему живому в течение тысячелетий. Обычно их хоронят ни дне морей, но нередки и случаи захоронения отходов глубоко под землей.

Другие возобновляемые источники энергии

В будущем люди смогут использовать множество различных естественных источников энергии. Например, в вулканических районах разрабатывается технология использования геотермальной энергии (тепла земных недр). Другим источником энергии является биогаз, образующийся при гниении отходов. Он может применяться для отопления жилищ и нагревания воды. Уже созданы приливные электростанции. Поперек устьев рек (эстуариев) нередко возводят плотины. Особые турбины, приводимые в действие приливами и отливами, вырабатывают электроэнергию.

Как сделать ротор Савония:

Ротор Савония представляет собой механизм, применяемый крестьянами в Азии и Африке для подачи воды при ирригации. Чтобы самим сделать ротор, вам потребуются несколько чертежных кнопок, большая пластмассовая бутылка, крышка, две прокладки, стержень длиной 1 м и толщиной 5 мм и два металлических кольца.

Как это сделать:

1. Чтобы сделать лопасти, обрежьте бутылку сверху и разрежьте ее пополам вдоль.

2. С помощью чертежных кнопок прикрепите половинки бутылки к крышке. Соблюдайте осторожность при обращении с кнопками.

3. Приклейте прокладки к крышке и воткните в нее стержень.

4. Приверните кольца к деревянному основанию и поставьте ваш ротор на ветру. Вставьте стержень в кольца и проверьте вращение ротора. Выбрав оптимальное положение половины бутылки, приклейте их к крышке прочным водоотталкивающим клеем.

Основные виды и источники энергии;

Виды и основные характеристики топлива

Топливо - вещество, при сжигании которого выделяется зна­чительное количество теплоты, используемое как источник получе­ния тепловой энергии и как сырье в химической, металлургической и других отраслях промышленности. Топливо, содержащее органи­ческие вещества, называют углеводородным. Путем химической переработки из него получают разнообразные продукты. Различа­ют естественные и искусственные топлива. К естественным отно­сятся ископаемые и растительные топлива, а к искусственным - продукты переработки естественных топлив. Все топлива по агре­гатному состоянию подразделяются на твердые (ископаемые угли, торф, древесина, сланцы), жидкие (нефть, нефтепродукты), газо­образные (природный и попутный газы и др.).

Основной характеристикой топлива является его теплота сго­рания , т. е. количество теплоты, выделяющейся при полном сгора­нии топлива. Различают теплоту сгорания удельную (МДж/кг) и объемную (МДж/м 3).

В состав всех видов топлив входит горючая масса (органи­ческая масса и горючие неорганические вещества: сера, ее соединения и т. д.) и негорючая масса (зола, влага). Чем больше в топливе золы, влаги, тем ниже его теплота сгорания. Чем выше в органической массе содержание углерода и водорода и чем ниже содержание кислорода и азота, тем больше теплота сгорания топ­лива.

Одним из важнейших видов жидких топлив является нефть, которая представляет собой сложную смесь парафиновых, нафте­новых и ароматических углеводородов. В нефти имеются также и неуглево­дородные и минеральные примеси. Органическая часть нефти сос­тоит на 83. 87 % из углерода и на 12. 14 % из водорода. Удель­ная теплота сгорания нефти колеблется от 39,8 до 44 МДж/кг.

Природный газ содержит до 98 % метана. Его объемная тепло­та сгорания составляет в среднем 30. 35 МДж/м 3 . В нефти, нахо­дящейся в недрах Земли, всегда присутствуют растворенные газы, которые при добыче выделяются из нее (попутные газы). Объемная теплота сгорания попутных газов примерно в.1,5 раза выше, чем природного газа, и составляет

50 000. 55 000 кДж/м 3 ,

В нашей стране создана мощная топливно-энергетическая база. Однако быстрый рост различных отраслей народного хозяйства предъявляет все более высокие требования к развитию топливно-энергетической базы страны и предполагает экономное и рацио­нальное использование всех видов топлива при одновременном снижении затрат на их добычу.

Энергетический потенциал нашей планеты включает практи­чески неистощимые в обозримом будущем источники энергии - Солнце, ветер, воды рек и морей - и невосполнимые, связанные с использованием полезных ископаемых - нефти, угля, природно­го газа, торфа и горючих сланцев.

Источники энергии первой группы, за исключением гидроэнер­гии рек, до настоящего времени играют ничтожную роль в мировом энергетическом балансе, а основное количество энергии челове­чество получает, реализуя химическую энергию и частично ядерную энергию различных топлив.

Все технологические процессы в промышленности связаны с за­тратами или выделением энергии. Энергия необходима как для проведения самого технологического процесса, так и для транспор­тировки сырья и готовой продукции, вспомогательных операций (сушка, дробление, фильтрование и т. д.). Потому промышленные предприятия потребляют значительное количество энергии различных видов. В структуре себестоимости, например, химической про­дукции затраты на получение энергии оставляют около 10%, что свидетельствует о высокой энергоемкости химических производств. Энергоемкость различных производств, т. е. расход энергии на изготовление единицы продукции, различается весьма значительно. Наша страна располагает большими энергетическими ресурса­ми, которые позволяют полностью удовлетворить потребности в них всех отраслей народного хозяйства. Однако топливно-энер­гетические ресурсы страны распределены по ее территории нерав­номерно и характеризуются различными экономическими показа­телями их использования (табл. 3.1).

Табл. 3.1.Распределение топливно-энергетических ресурсов на территории России

В промышленности применяются разнообразные виды энергии: электрическая, тепловая, ядерная, химическая и энергия света.

Электрическая энергия в промышленности использу­ется для преобразования в механическую энергию, для осуществле­ния процессов обработки материалов, дробления, измельчения, пе­ремешивания, центрифугирования, для нагревания, электрохими­ческих реакций и электромагнитных процессов.

Электрическую энергию производят гидроэлектростанции, теп­ловые и атомные электростанции. В последние годы успешно ведут­ся работы по непосредственному преобразованию тепловой энергии в электрическую. Всестороннее развитие технической базы всех отраслей народного хозяйства России требует дальнейшего разви­тия электроэнергетики. Большое внимание уделяется электри­фикации основных и вспомогательных процессов, комплексной ме­ханизации и автоматизации производства.

Тепловые электростанции играют доминирующую роль в элект­роэнергетическом балансе нашей страны, на их долю приходится около 80 % всей производимой в России электроэнергии. Проблема совершенствования тепловых электростанций, повышение коэффи­циента их полезного действия имеет большое народнохозяйствен­ное значение.

В России сосредоточено почти 12 % мировых гидроэнергетиче­ских ресурсов. Современный период развития гидроэнергетики характеризуется дальнейшим увеличением мощности строящихся ГЭС и перемещением гидроэнергостроительства на восток страны, где построены самые мощные ГЭС в мире - Братская, Новосибир­ская, Красноярская.

Потенциальная энергия мировых запасов ядерного горючего превосходит в десятки раз потенциальную энергию разведанных запасов угля, нефти и природного газа вместе взятых. В целях экономии и правильного использования природного невозобновляе­мого энергетического сырья необходимо интенсивно развивать атомную энергетику.

Атомные электростанции (АЭС) обладают высоким коэффици­ентом полезного действия. Так, например, при распаде 1 г урана-235 выделяется такое количество тепловой энергии, которое экви­валентно 1000 кВт-ч электроэнергии. Иными словами, при распаде 1 т урана-235 выделяется такое же количество теплоты, что и при сгорании 300 000 т каменного угля.

Тепловая энергия, получаемая при сжигании топлива, широко применяется для проведения многочисленных технологиче­ских процессов (нагревания, плавления, выпарки, сушки, перегон­ки и т. д.), а также в качестве источника теплоты для проведения эндотермических реакций. В качестве теплоносителей могут быть использованы топочные газы, водяной пар, перегретая вода, орга­нические теплоносители.

Химическая энергия связана с выделением теплоты в экзотермических химических реакциях, которая используется для нагрева реагентов, проведения эндотермических химических про­цессов. Например, в производстве водорода из азотно-водородной смеси теплота, выделяющаяся при конверсии метана, используется для проведения реакции конверсии оксида углерода. В производ­стве аммиачной селитры выделяющаяся в результате экзотермиче­ской реакции теплота используется для выпаривания реакционной массы и ее кристаллизации. Химическая энергия используется в гальванических элементах и аккумуляторах, где она преобра­зуется в электрическую. Эти источники энергии характеризуются высоким коэффициентом полезного действия.

Световая энергия используется в промышленности при создании фотоэлементов, фотоэлектрических датчиков, автоматов, а также для реализации большого числа фотохимических процес­сов в технологии синтеза хлористого водорода, реакциях хлориро­вания, бромирования и др. Фотоэлектрические явления, связанные с преобразованием световой энергии в электрическую, исполь­зуются в системах управления и контроля технологических про­цессов. Источником световой энергии является Солнце, где про­исходят атомные реакции синтеза ядер водорода и углерода. Сна­чала использовалась лишь тепловая энергия солнечных лучей. В настоящее время широко известно применение солнечных бата­рей на космических кораблях. Солнечную тепловую энергию в юж­ных районах страны можно использовать для кипячения воды, нагревания жидкостей и даже для плавления металлов (солнеч­ные печи).

Энергия рек занимает значительное место в производстве электроэнергии в России и особенно в странах, богатых гидроре­сурсами. Электроэнергия, вырабатываемая ГЭС, составляет 99,7 % в электроэнергетическом балансе Норвегии, во Франции и Италии - соответственно 50 и 58 %. Однако вследствие бурного развития атомной энергетики доля ГЭС в электроэнергетическом балансе России будет снижаться и составит через 25. 30 лет около 10 %.

Энергия морских приливов - разновидность энер­гии водного потока. Приливы - периодические колебания уровня моря, обусловленные силами притяжения Луны и Солнца в соеди­нении с центробежными силами, развивающимися при вращении систем Земля - Луна и Земля - Солнце. Приливы обладают огром­ной энергией. Высота приливной волны достигает 10. 20 м. Мировой технический потенциал морских приливов составляет около 500 млн т условного топлива в год. Для нашей страны представляет интерес использование этого источника энергии в районах побережья Баренцева, Белого и Охотского морей. Уже сделаны первые иссле­дования на пути к практическому использованию этого источника энергии.

Основные виды и источники энергии


Основные виды и источники энергии; Виды и основные характеристики топлива Топливо - вещество, при сжигании которого выделяется зна­чительное количество теплоты, используемое как источник